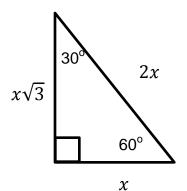
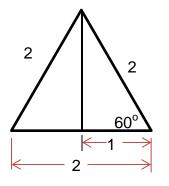

T3: Special Right Triangles

There are two special right triangles of interest.

1. The 45-45-90 triangle


This is an isosceles triangle, so the lengths of the legs are equal.


The hypotenuse (via Pythagorean Thm) is $\sqrt{2}$ times the length of each leg.

 $\sin 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ $\tan 45^\circ = \frac{1}{1} = 1$

 $\sqrt{3}$

2. The 30-60-90 triangle

$$\sin 30^{\circ} = \frac{1}{2}$$

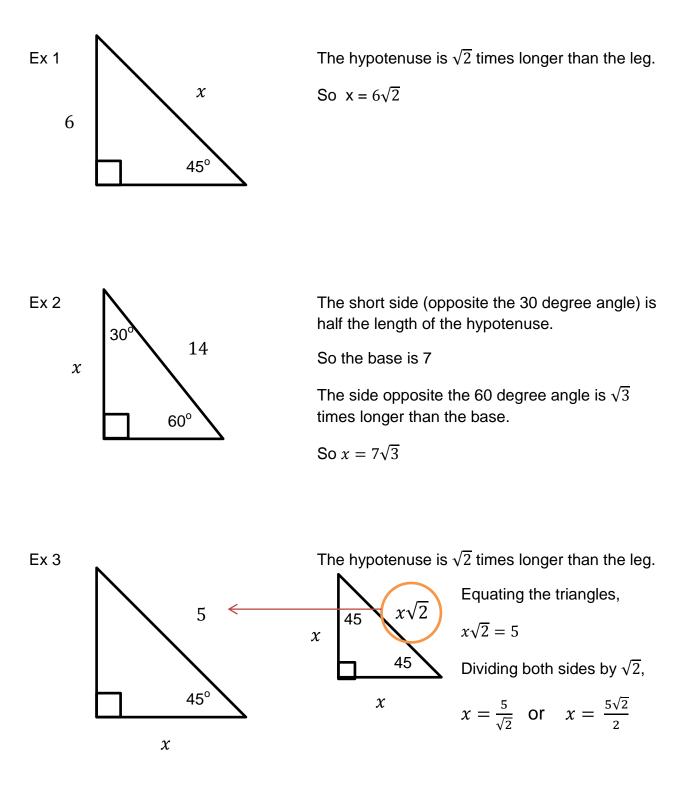
$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos 60^{\circ} = \frac{1}{2}$$

$$\tan 60^{\circ} = \frac{\sqrt{3}}{1} = \frac{\sqrt{3}}{1}$$


This is half of an equilateral triangle.

The top angle is 30° (half of 60°).

The base (opposite to the 30° angle) is half the length of the hypotenuse.

The third side (opposite to the 60° angle) is $\sqrt{3}$ times greater than the base (Pythagorean Thm).

Find the missing value.

